FOSDEM 2020

go lem Facilitating deterministic
distributed computation
with WASI

JAKUB KONKA

“Who Are You”

My name is Jakub Konka

R&D Researcher at Golem Factory

Regular contributor to Wasmtime
and WASI, and one of the authors
of wasi-common library

Member of WebAssembly CG

7 @kubkon

kubkon@golem.network
>< kubkon@jakubkonka.com
¢ @kubkon

8o|em

What is WASI?

What is WASI?

01

WASI - WebAssembly
System Interface

02

Standardisation led by
Bytecode Alliance

03

Capability-based security -
safe and portable access to
host’s resources

WA S|

Source:

8o|em

https://wasi.dev

capabilities

/workspace

entropy

C/C++/Rust
binary or library

Wasm
module
other host
WASI
sandboxed

/dev

runtime

clocks

8o|em

8o|em

Allowed ./ Forbidden

File::create("“/workspace/new”)?; | File::open("“/dev/null”)?;

rand: :thread_rng() ; now = SystemTime: :now();

Whatis the setting?

8o|em

Meet the Golem Network

O
)
REQUESTOR PROVIDER

of computing resources
demand side of the market

of computing resources
supply side of the market

</>

()
DEVELOPER

Meet the Golem Network

- CHOOSE
O AN APP
L_F\ Jq ________
()
REQUESTOR

M wasm APPS

DEVELOP
AN APP

L] <~
C)

DEVELOPER

8&%1

golem
NETWORK

8o|em

Wasm sandboXx in Golem

C/C++/Rust
binary

wasm32-unknown-emscripten

Wasm
module
|
|
—————————————— 2 el |
|
v

|
: |
i |
: |
| 6@ SpiderMonkey-based :
| sandbox |

|
: |
I |
i |

In host's memory

8o|em

Verification by redundancy

REQUESTOR

WASM TASK

#2

- - e
O -
-

|
|
v

byte by byte
comparison

|
I
I
|
I PROVIDER #1 #2 RESULT
|
|
I
I

PROVIDER #2 #2 RESULT

Is WASI
deterministic?

8o|em

Sources of nondeterminism in WASI

01 random_get (

Access to random device EE: : 1:2{” ng,e

e Provided by ‘random_get’) —> Re_sult;(), Errno> {

e Willgetits own module // call “getrandom" to access
e Will require a capability // host’s entropy source, and

// populate input “buf’

8o|em

Sources of nondeterminism in WASI

02 clock_time_get(
id: Clockid,
precision: Timestamp
) -> Result<Timestamp, Errno> {

Access to system clocks
e Provided by ‘clock_time_get

e Willgetits own module // call ‘clock_gettime" to
e Willrequire a capability // get current host’'s time
// etc.

8o|em

Sources of nondeterminism in WASI

fd_filestat_get(
fd: Fd
) -> Result<Filestat, Errno> {
// call “fstat® to

03 // get info on the underlying
File atim/mtim/ctim stats // host's fd
e Partof Filestat struct ;
° Inherenﬂysetbythehost Filestat {
when file is created/modified dev: Device,
e Canberead by amodulevia ino: Inode,
“fd_filestat_get or filetype: Filetype,
‘path_filestat_get’ nlink: Linkcount,

size: Filesize,

atim: Timestamp,
mtim: Timestamp,
ctim: Timestamp,

8o|em

Sources of nondeterminism in WASI

fd_readdir(

o4 fd: Fd,
Listing contents of a directory buf: *mut us,
e Provided by ‘fd_readdir buf_len: Size,
. cookie: Dircookie,
e Order of entries dependent) -> Result<Size, Errno> {
on the host and the // call “readdir’ iteratively
filesystem used // to get enough dir entries

// starting from “cookie® to
// fully populate “buf"

Sources of nondeterminism in WASI

[WebAssembly / WASI

Code @ Issues 71 Pull requests 8 Actions Projects 0 Security

Roadmap to determinism in WASI #190

kubkon opened this issue 28 days ago - 15 comments

05

kubkon commented 28 days ago Collaborator | +(@) +**
The discussion about enforcing (ensuring?) determinism in WASI has already been started and
touched upon in a couple of issues here and there (#185, #118, bytecodealliance/wasmtime#748, if |
missed any, please feel free to mention it in this thread). I'd like to gather all the knowledge, ideas,
perceived issues, etc. here creating essentially a meta-issue that we could use to track this, and
come up with solutions, or at least guidance as to what direction to take.

And the list goes on!
Encourage you to join the
ongoing discussion here:

I'll try and describe all potential sources of nondeterminism below leaving out sockets for now
though. Feel free to correct me, add more, etc.

Randomness and entropy

This is an obvious one, and from what | understand, the current consensus is to have it require a
capability (see #185 and bytecodealliance/wasmtime#748 for more details). random_get also will
get its own module in the upcoming WASI snapshot: wasi_ephemeral_random.witx.

Clocks

Access to system/thread/process clocks will also lead to nondeterminism, and as far as |
understand, like in the randomness case, the consensus is to have it require a capability (see #118
and bytecodealliance/wasmtime#748 for more details). Also as in the randomness case,
clock_time_get will get its own module in the upcoming WASI snapshost:
wasi_ephemeral_clock.witx.

© Unwatch~ = 135

Insights

8o|em

Assignees

No one—assign yourself

Labels

Projects

None yet

Milestone

No milestone

Notifications Customize
«x Unsubscribe

You're receiving notifications because
you're watching this repository.

8 participants

BEE G

&

https://github.com/WebAssembly/WASI/issues/190

Can WASI be made
deterministic though?

8o|em

The model
A
|
S in: Fd l out: Fd R
— — | . Exported “compute” | i
—— |7~~~ | Wasm function Bl gl —
- | -
— : “fn compute(in: Fd, out: Fd)~ | -
|
|
|
Input Wasi e e e g Output Wasi
file descriptor file descriptor
The only rights we provide is The only rights we provide is
reading or in WASI terms: writing or in WASI terms:

‘rights::fd_read’ ‘rights::fd_write’

What is WASI file descriptor?

WASI Fd

11

Entry

Stdin

Entry {
/] ...
os_handle: OsHandle,
rights_base: Rights,
rights_inheriting: Rights,

8o|em

8o|em

WASI Fd rights?

Rights::fd_read Rights::fd_write
| |
| |
| |
| _ |
[can invoke [
| |
| |
\ 4 A 4
fd_read(fd, iovs)?; fd_write(fd, ciovs)?;
fd_fdstat_get(fd)?; fd_fdstat_get(fd)?;

But nothing else!

Have we just
achieved determinism?

8o|em

Almost! But not quite there yet...

You can still invoke these, since
they are "Fd" independent

poll_oneoff(...)?;

random_get(...)?; environ_get(...)?;

clock_time_get(...)?;

Good news is, they will all get their own
module and require a capability

Time for examples!

8o|em

Everything’s on Github!

01

Examples + description on Github:

02
3 examples to play with:
1. - read from 'in’, uppercase, write to ‘out’
2. - verify that 'in” and "out” have only fd_read" and
“fd_write respectively
3. - plug in a text-to-speech “flite' engine into model

03

Fork, play with, break, extend...
In general, have fun!

https://github.com/kubkon/wasi-compute
https://github.com/kubkon/wasi-compute/tree/master/hello-compute
https://github.com/kubkon/wasi-compute/tree/master/test-compute
https://github.com/kubkon/wasi-compute/tree/master/flite-compute

Have more quesfo
Contact me direct «

7 @kubkon
et

52 kubkon@golem.network

>< kubkon@jakub

O @kubkon

